

Assessing the Efficacy and Process Impacts of Odor Control Approaches Using Process Modeling

Ulrich Bazemo, P.E.

Process Engineer

wef Member Association

🗢 🐵 Black & Veatch Corporation 2025. All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Corporation.

Agenda

- Background
- Model Development and Calibration
- Results
- Summary

Background

Facility Information

- Trinity River Authority Central Regional Wastewater System (CRWS)
- Located in Texas
- 189 mgd AADF
- BNR facility
- Significant solids process change at time of study
 - Thermal hydrolysis pretreatment + anaerobic digestion (THP+AD) solids management

Project Objectives

Assess odor mitigation at headworks through primary clarifiers with the application of:

- Oxygen
- Ferrous sulfate
- Magnesium hydroxide

Project Approach

Liquid phase odor mitigation considered:

- Oxygen
- Ferrous sulfate
- Magnesium hydroxide

Field testing was not feasible – significant onsite construction and need for existing equipment rehabilitation

Plant modeling to assess odor mitigation and downstream impacts

- H₂S mitigation
- Nutrient removal performance

Model Development

Aerobic Environment – Addition of Oxygen

- Maintaining aerobic conditions in the liquid allows the bio-chemical oxidation of H2S to sulfur and sulfate
- Influent DO increase to concentration in excess and prevents H2S generation

Model Calibration

Calibration and Existing Facilities

Calibration approach

- Multiple flow rates
 - 75 150 mgd
- Dose ratios based on previous testing (FeSO₄ and oxygen)
 - FeSO₄ ratio sensitivity 2:1 lbs Fe/lbs S
 - $Mg(OH)_2$ Target pH 7.6 and 8.0
 - Oxygen target DO 11 mg/L

Oxygen Model Calibration

5,750 lbs $_{O2}$ /d fed at PS6A in the model to match the 11 mg/L target DO in the field study

Calibration Key Parameters:

- Influent bacteria (SOO)
- Airflows to represent turbulence

Ferrous Sulfate Model Calibration

- Model calibration using pilot study
- 3,860 lbs Fe/d ferrous sulfate during pilot
 - 50 mgd influent flow (HWB)
 - 2:1 Fe/S

Calibration Key Parameters: • Iron sulfide dissolution and

• Iron sulfide dissolution and precipitation rates

Simulation Results

Pure Oxygen Injection - Dissolved Sulfide Mitigation

Target DO concentration of 5 mg/L

Effective sulfide reduction through primary treatment

Pure Oxygen – Potential Whole Plant Impacts

- VFAs Key to stable EBPR performance (phosphorus removal)
- 10 mg/L VFA decrease with O₂ addition

Downstream impacts of pure oxygen could decrease BNR performance

Ferrous Sulfate Addition – Dissolved Sulfide Mitigation

Ferrous Sulfate Dose, lb/d	Ratio of lbs Fe per Lb S
7,340 lbs Fe/d	2
10,000 lbs Fe/d	3
13,350 lbs Fe/d	4

Removal becomes rate limited due to alkalinity and pH

Ferrous Sulfate – Whole Plant Impacts

- Ferric and sulfide reaction consumes alkalinity
- Limitations to influent alkalinity can cause downstream process constraints

*Historically facility noted nitrification instability at pH <6.6

Magnesium Hydroxide Addition – Dissolved Sulfide Mitigation

Magnesium hydroxide dosage requirement at 100 MGD influent flow	Target pH
Baseline	7.2
4,400 lbs Mg/d	8

*Magnesium hydroxide increases alkalinity – downstream process benefits

Magnesium Hydroxide Addition – Retention time

- Results indicate dosing location 30min upstream to impact targeted location
- Dose ratios further confirmed model results

Summary

- Simulations show 50-75% sulfide removal in comparison to baseline
- Process modeling help identify potential plant impacts
- Key parameters in model calibration are biological and chemical reaction rates
- Process modeling is an effective option in evaluating chemical addition

Questions?

Ulrich Bazemo, Process Engineer <u>Ulrich.bazemo@bv.com</u> (301) 556-4376