Biological Odor Control Overview and Design Considerations

FWEA Air Quality Seminar

Tavares, FL

WATER + ENVIRONMENT + TRANSPORTATION + ENERGY + FACILITIES

Ryan Keefe Environmental Engineer

February 20, 2025

Discussion Topics

- Biology
- Types of Biological Odor Control
 - Biofilters
 - Biotrickling Filters / Bioscrubbers

Section 1- Biology of Biological Odor Control

Biology of Odorant Formation

- Biological processes form a majority of offensive odors associated with wastewater
 - Microbial degradation
 - Sulfide generation
 - Anaerobic biological processes

Thiobacillus

 $H_2S + 2O_2 \rightarrow H_2SO_4$

- Prefers to live suspended as thin sheets
- Grows on sewer surfaces above waterline and typically invisible to naked eye
- Convert chemicals faster than heterotrophs
- Byproduct sulfuric acid (H₂SO₄) associated with corrosion of concrete and metals
- The majority of hydrogen sulfide gas never leaves the sewer system and is biologically converted to sulfuric acid

Biogenic Odorants

- Inorganics
 - Hydrogen sulfide (H₂S)
 - Ammonia (NH₃)

- Organics (e.g. VOCs)
 - Mercaptans
 - Sulfides
 - Amines
 - Skatoles & Indoles

Detection levels in the parts per billion!

If Biology Caused This, Why Not Use Biology to Fix This?

Biology of Biological Odor Control

- Main biological processes used in biological odor control
 - 1. Autotrophic Degradation
 - 2. Heterotrophic Degradation

	Autotrophs	Heterotrophs
Degradation	Inorganics (H ₂ S, NH ₃)	Organics (VOCs)
Environment	Acidic (2 – 3 pH)	Neutral (7 – 8 pH)

Section 2- Biological Odor Control Treatment Systems

Typical Biological Odor Control System

Major Biological Odor Control Systems (In Chronological Order)

In-Ground Biofilters

In-Vessel Biofilters

Modular Biofilters

Biotrickling Filters

Section 2.1- In-Ground and In-Vessel Biofilters

In-Vessel Biofilters

Biofilters: Media Cross-Section

- Typical media bed thickness: 48-inches
 - If media bed is too thick, media will compress under its own weight and lower quantity of air flow
- Autotrophic Degradation: Inorganics (e.g. H₂S and NH₃)
- Heterotrophic Degradation: Organics
 - Heterotrophic Degradation can usually be incorporated as a polishing stage
- Ideal cross-section breaks down at high H₂S loading levels, increases size of "Autotrophic Degradation" zone
- Empty Bed Residence Time (EBRT)

Empty Bed Residence Time

- Depends on inlet composition and desired performance
- Function of media surface area, media height, and inlet volumetric flow rate

 $EBRT = \frac{Qh}{A}$

Q = inlet flow rate, cfm h = media height, ft A = surface area, ft²

Biofilters: Media

Biofilters: Organic Media

- Stabilized Woodchip or Bark
 - Stabilized = Dried out
 - Relatively resistant to biological breakdown
 - Want large chunks for biofilm
- Compost
 - Partially degraded organic material
 - Mineralized organic matter
 - Contains autotrophs and heterotrophs

Biofilters: Organic Media

- Avoid Processed Construction and Demolition Material
 - Usually poorly and unevenly processed
 - Want uniform media chunks
 - Non-uniform media chunks cause channeling
 - May contain hazardous materials, adhesives (e.g. plywood), metals

Biofilters: Bark Media Bed

Section 2.2- Modular Biofilters

Modular Biofilters

- Easy to design, predictable, and more reliable
- Easier to changeout media
- Longer media life
 - Canopy maintains media consistency
 - Encasement prevents subsidence of media
 - Encasements controls drainage

	Empty Bed Residence Time, sec	Velocity, ft/min
In-Ground Biofilter	30 - 60	3 – 5
Modular Biofilter	30 - 40	10 – 15

Modular Biofilters: Inorganic Media

- Proprietary media using a combination of highly refractory support media with nutrients
- Higher velocity
- Lower Empty Bed Residence Time (EBRT)
- Steady pressure drop
- Less channeling, more uniform
- Carries a long media warranty of ten years, can last 15 years

Modular Biofilter- Modern Installation

Section 2.3- Biotrickling Filters

Biotrickling Filters

- Also known as bioscrubbers and biotowers
- Main Operational Strategies:
 - 1. Once-through mode
 - 2. Recirculation mode

	Empty Bed Residence Time, sec	Velocity, ft/min
In-Ground Biofilter	30 – 60	3 – 5
Modular Biofilter	30 – 40	10 – 15
Biotrickling Filters	6 – 20	60 - 140

Biotrickling Filters: Once-Through Mode

Biotrickling Filters: Recirculation Mode

Fresh Water Mode

Recirculation Mode

Biotrickling Filters: Design Considerations

- 1. Operational Strategy
- 2. Shape
- 3. Supply Water Quality
- 4. Inlet Foul Air Composition
- 5. EBRT
- 6. Stages
- 7. Temperature
- 8. Recirculation and/or Booster Pumps
- 9. Irrigation
- 10. Nutrients
- 11. Water Panel
- 12. Access Ladders and Platforms
- 13. Manways
- 14. Media
- 15. Demister
- 16. Outlet stack
- 17. Drains
- 18. Gauges and Meters

Biotrickling Filters: Design Considerations

- **1.** Operational Strategy
- 2. Shape
- 3. Supply Water Quality
- 4. Inlet Foul Air Composition
- 5. EBRT
- 6. Stages
- 7. Temperature
- 8. Recirculation and/or Booster Pumps
- 9. Irrigation
- **10.** Nutrients
- 11. Water Panel
- 12. Access Ladders and Platforms
- 13. Manways
- 14. Media
- 15. Demister
- 16. Outlet stack
- **17.** Drains
- **18.** Gauges and Meters

Biotrickling Filter: Shape

Low Profile

Biotrickling Filter: Supply Water Quality

- Chemicals that deter bacterial growth:
 - Chlorine
 - Hardness
 - Total Suspended Solids
- Chemicals that encourage bacterial growth:
 - Total Kjeldahl Nitrogen
 - Phosphorous
 - Oxygen

Biotrickling Filter: Inlet Foul Air Composition

- Inorganics
 - Hydrogen sulfide (H₂S)
 - Ammonia (NH₃)
- Organics (e.g. VOCs)
 - Mercaptans
 - Sulfides
 - Amines
 - Skatoles & Indoles
- SAMPLE!!

Biotrickling Filter: Recirculation/Booster Pumps

- Recirculation Pump(s)
 - Temporarily used for acclimation
 - Permanently used for recirculation mode
 - Built for pumping corrosive liquids
- Booster Pump(s)
 - Used to boost supply water to irrigation nozzles

Biotrickling Filter: Irrigation

- Full cone nozzles at top of system
- On intermittent timer to supply appropriate amount of water

Biotrickling Filter: Nutrients

- Nutrients (nitrogen, oxygen, phosphorus, etc) to supply to bacteria to help grow
- If bacteria already have enough food, giving them nutrients will foul up system
- Nutrient feed pump usually housed in water panel

Biotrickling Filter: Water Panel

Biotrickling Filters: Media

- Two types of media:
 - 1. Random
 - 2. Structured
- Media treated well can last 10-15 years
- Densities of media can be mixed depending on the desired biofilms to form

Biotrickling Filter: Drains

- All condensate drains trapped
- Special drain on biotrickling filter sump

Biotrickling Filter: Gauges and Meters

Section 3- Closing Thoughts

Biological Odor Control: Periodic Monitoring

- Moisture Content
 - Water supply pressure
 - Nozzle pressure
 - Total water use over time
 - Chlorine content in supply water
- Pressure Drop
- Airflow
- Performance
 - Hydrogen sulfide removal over time
- Mechanical Problems
 - Leaks in vessel and appurtenances
 - Blower noises and vibration

Conclusions

 Biological odor treatment is an effective odor control technique when design rules are followed

	Autotrophs	Heterotrophs
Degradation	Inorganics (H ₂ S, NH ₃)	Organics (VOCs)
Environment	Acidic (2 – 3 pH)	Neutral (7 – 8 pH)

	Empty Bed Residence Time, sec	Velocity, ft/min
In-Ground Biofilter	30 – 60	3 – 5
Modular Biofilter	30 – 40	10 – 15
Biotrickling Filters	6 – 20	60 - 140