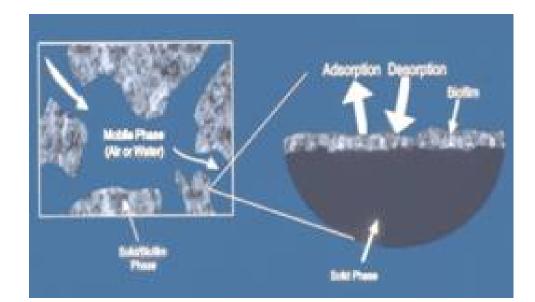


Biofiltration

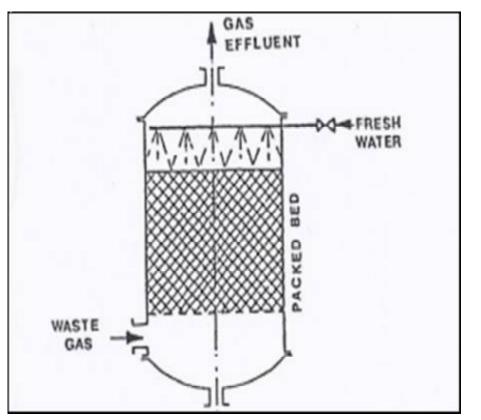
Bruce Singleton P.E. CDM Smith Florida water Environment Association Air Quality Seminar Ft. Myers FL February 9, 2017

Discussion Topics

- Biological Treatment of Wastewater Odors
- History and Development of Biological Odor Treatment
- Biofilters
- Media Options and Preferences

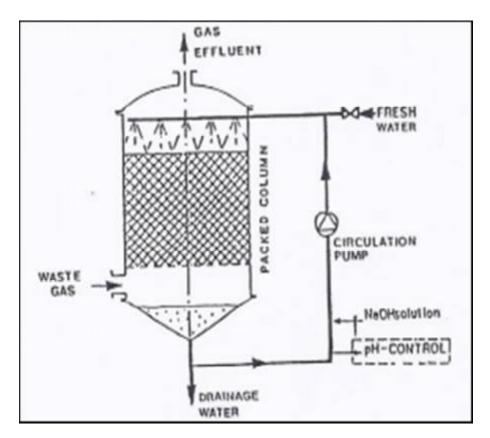

Biological Odor Treatment

- Biogenic Odors
 - Inorganic Reduced Sulfur
 - Hydrogen Sulfide (H₂S): Rotten Egg Odor, 0.5-1 ppb Detection level
 - Organic reduced Sulfur
 - Mercaptan
 - Methyl Mercaptan (CH₂SH): Cabbage Odor, ~1 ppb Detection Level
 - Ethyl Mercaptan (C₂H₅SH): Oniony/Garlic Odor, ~1 ppb Detection Level (Nat Gas)
 - Organic sulfides
 - Dimethyl Sulfide (C₂H₆S): Decaying meat/vegetables, ~1 ppb Detection Level
 - Dimethyl Disulfide (C₂H₆S₂): Sweet Od0r of decaying Cabbage/Vegetables, -1 ppb Detection Level
 - Inorganic Nitrogen
 - Ammonia (NH₃): Characteristic Pungent, 5 50 ppm (OSHA)
 - Organic Nitrogen
 - Amines (RNH₂): Fishy, 5 50 ppb
 - Skatole (C₉H₉N) & Indole (CH₈H₇N) (Proteins): Intense Fecal Odor,


Biological Odor Treatment Process

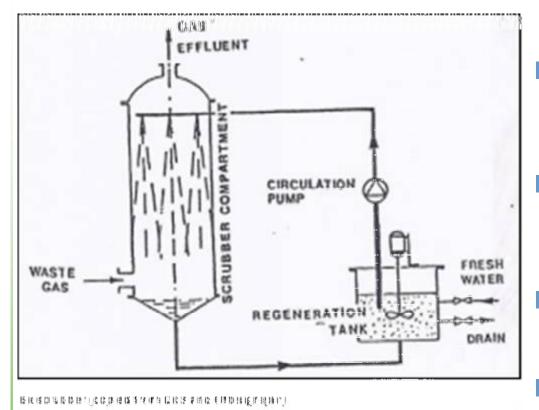
Biofilters

- Immobilized microflora
- Stationary Aqueous Phase
- Biotrickling Filters
 - Immobilized microflora
 - Mobile Aqueous Phase
- Bioscrubbers
 - Dispersed Microflora
 - Mobile Aqueous Phase


Biofilter

Biofilter Filter (copied from Diks and Ottengraph1)

- Designed in a trench, bermed structure, or vessel
- Utilize organic media such as composted green matter and woodchips. Inorganic media in modern designs.
 - Requires only passive acclimation
- Irrigation critical may be internal or external
- Designed around 3- 4 cfm/ft² and 3 - 4 ft deep (35 - 60 sec residence time)
- Media life limited to <5 years.</p>
- Requires maintenance to keep moisture and airflow consistent.


Biotrickling Filter

Biotrickling Filter (copied from Diks and Ottengraph¹)

- Countercurrent design with water flowing downward and air traveling upward
- Plastic media
 - Requires active acclimation
- Increased mass transfer due to improved air distribution and irrigation
- Light weight media allows for vertical stages.
- Up to 100 cfm/ft² (Sewage Odor) loading rate at <100 ppm H₂S. And >100 ppm with lower loading rate (cfm/ft²)

Bioscrubber

- Countercurrent design with water flowing downward and air traveling upward
 - Plastic media
 - Requires active acclimation
- Increased mass transfer due to improved air distribution and irrigation
- Separate mass transfer and reaction areas
- Up to 100 cfm/ft² (Sewage Odor) loading rate at <75 ppm H₂S. And >100 ppm with lower loading rate (cfm/ft²)

Biofiltration History: USA

- 1934 Earliest patents for biofiltration
- First biofilters in the United States (From: Identifying and Controlling Odor in the Municipal Wastewater Environment, Phase 1: Literature Search and Review, WERF 2003))
 - 1994 LaBeau and Milligan: Top soil, peat, cypress/wood mulch for the control of H₂S
 - 1997 Vaith and Haydorn investigated and compared the operation of two biofilters used on wastewater pumping stations.
 - 1997 Montgomery Watson Proposes biofilters for Memphis TN wastewater odor
- Modular Biofilters
 - 1997 Biocube Patent for modular tray system
 - 1998 Biorem Patent for Biosorbens synthetic media
 - 1998 CVT America Patent for biofilter with modular panels
- Biological Treatment
 - Several patents and proprietary design for synthetic media systems

Organic Media Biofilters

- Mechanical Design; Key to Success
 - Air Distribution
 - Perforated Pipe
 - Design for constant pressure drop
 - FRP pipe: corrosion barrier on all sides
 - HDPE Floor System
 - Irrigation System
 - Single level
 - Multi level
 - Industrial solvents
 - Drainage
 - Bottom drains
 - Containment
 - Concrete
 - Plastic reinforced HDPE pond liners

Organic Media Biofilters

- Environmental Control
 - Extends media life
 - Concrete bottoms and sides
 - Controls subsidence
 - Controls drainage
 - Canopies
 - Maintains media consistency
 - Enclosed
 - Modular

· \$ - · - \$ - - \$ - - \$ - - \$ - - \$ + - \$

Modular Biofilters

Biotrickling Filters and Bioscrubbers

Organic Biofilter Media Support Material

Stabilized Woodchips

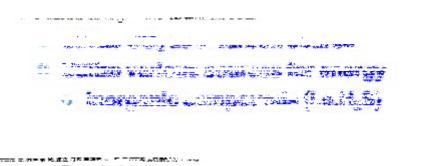
- C/N ratio: 400/1
- Relatively Resistant to biological breakdown
- Low aspect ratio :W/L

Stabilized Bark

- C/N ratio: 490/1
- Relatively Resistant to biological breakdown
- High aspect ratio: W/L

Biofilter Media Support Material

- Avoid Processed Construction and Demolition material
 - Usually poorly and unevenly processed
 - May contain hazardous material, adhesives, metals



Biologically Active Component

Compost

- Low C/N ratio: 20-30
- Partially degraded organic material
- Mineralized organic matter
- High biological component
 - 10⁹ bacteria /gm compost
 - Autotrophs: Sulfur oxidizers
 - Wide variety of heterotrophic organisms

Biofilter Media Design

Optimum Media Mixture

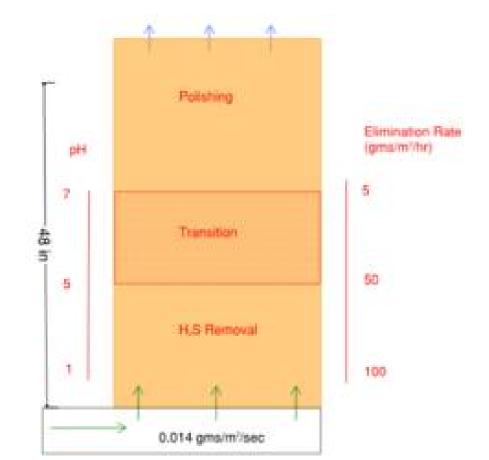
- 80% 90% support material
 - Fir bark
- 10 20% composted material
- pH 6-8
- Moisture 40%
- Media Depth
 - 42 in
- Humidification and Irrigation
 - Surface irrigation with humidification
 - Multilayered irrigation without humidification

Biofilter Media Design

Utility Media Mixture

- 80% 90% support material
 - wood chips or composting overs
- 10 20% composted material
- pH 6-8
- Moisture 40%
- Media Depth
 - 42 in
- Humidification and Irrigation
 - Surface irrigation with humidification
 - Multilayered irrigation without humidification

Bark Media Bed


Woodchip Media Bed

No Maintenance Media Bed

- Theoretical Elimination Capacity (EC) for biofilters:
 - Up to 150 gms H₂S_{removed}/m³_{media}/hr
- The biofilter operates between the theoretical maximum and a minimum i.e. 5 gms H₂S_{removed}/m³_{media}/hr as a function of:
 - H₂S level
 - Diffusion
 - Biological activity
 - Temperature

Inorganic media: Soil Media

- Proprietary mixture of inorganic material
- Considered permanent
- The same mechanical considerations apply
 - Air and water distribution

Inorganic Media Biofilters

- Proprietary media using a combination of a highly refractory support media with nutrient
- 30-40 sec EBRT
- Steady pressure drop (<3 in.wc.)
- Carries a long media warrantee of ten year

Inorganic Media Biofilters

- Completely enclosed
- Operated as biofilters generally with a humidification systems and sparse irrigation
- Limited to 50 ppm H₂S
- Effective on organic reduced sulfur compounds and VOCs

Conclusions

- Biofiltration is a basic but effective odor control technique when simple rules are followed
 - Careful attention to mechanical design of air and water distribution
 - Blending of media with a maximum of 20% organic compost, with less biodegradable material providing the remaining 80% of the mixture
 - Stratifying media is effective with complex airstreams
 - Protect biofilters from the elements
 - Canopies
 - Concrete enclosures
 - Covers
 - Limit the H2S levels intended for treatment
 - <50 ppm provides adequate polishing of residual odors</p>
 - <50 ppm provides the maximum media life</p>
 - Biofilters are low maintenance not no maintenance
 - When it's done it's done, don't top up the media bed after the first year.
 Plan on replacement after three years