A Novel Test Method for Measurement of MIC in a Wastewater Collection System

> Tim Matheis Evoqua Water Technologies LLC

Odors and Air Pollutants

Outline

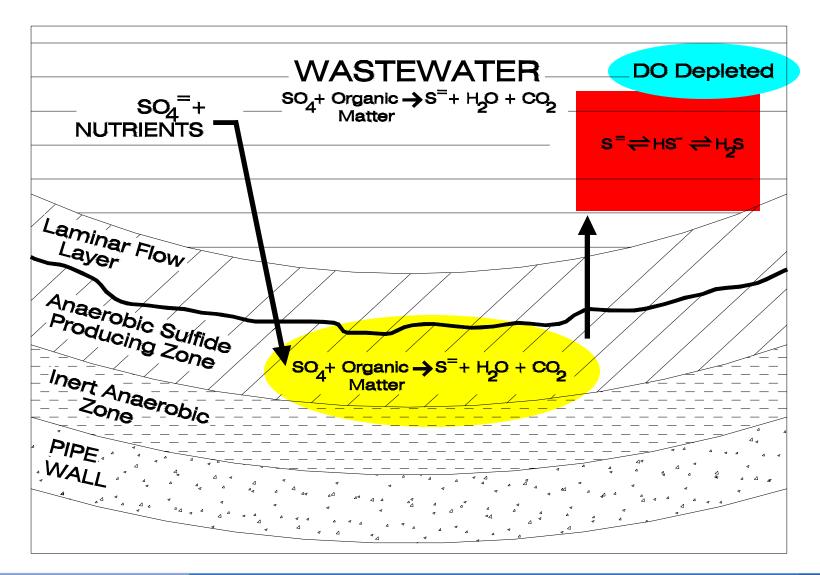
- Background
- Objectives
- Methods
- Data
- Results

Texas

Kentucky

Is failure acceptable? Do we have to wait for failure? Can failure at key points be eliminated? Impacts:

- 1. System Outage
- 2. Pollution Release
- 3. Danger to Public
- 4. Expensive and Disruptive to Fix
- 5. Headline News



1991 USEPA report to congress

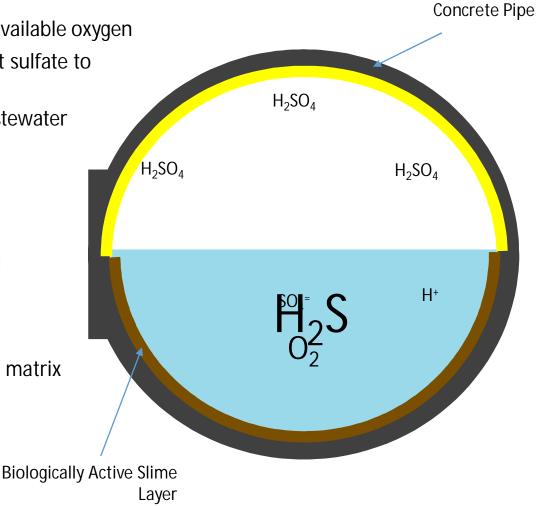
- 89 cities participating in the survey
- \$6 billion spent on sewer rehabilitation
- 32 cities reported sewer collapses
- 81% were believed to be due to hydrogen sulfide corrosion.
- 70% of the respondents reported hydrogen sulfide corrosion at the treatment plant.

Source of Hydrogen Sulfide

Mechanism of Concrete Corrosion

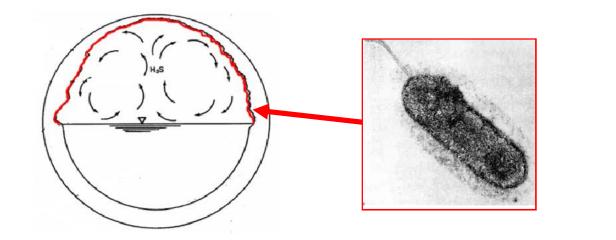
Step 1 – Aerobic bacteria deplete available oxygen

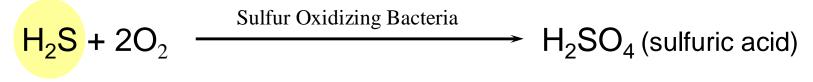
Step 2 – Anaerobic bacteria convert sulfate to sulfide


Step 3 – Sulfide combines with wastewater acidity to form hydrogen sulfide

Step 4 – Insoluble hydrogen sulfide escapes to headspace

Step 5 – Hydrogen sulfide is biologically oxidized to sulfuric acid


Step 6 – Sulfuric acid weakens the concrete structure


Acid reacts with calcium carbonate matrix

Microbial Induced Corrosion

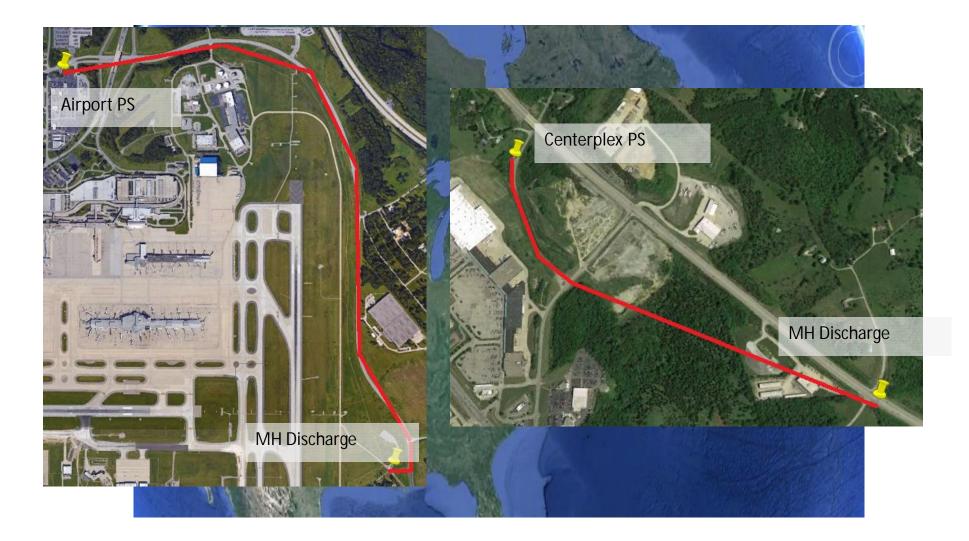
Genus: Acidithiobacillius Autotrophs – use inorganic substances to fulfill their energy needs Obligate - Need Sulfur, Oxygen and Carbon to survive Acidithiobacillus Intermedius pH ~ 4 Acidithiobacillus Thiooxidans pH ~ 2

Study Objectives

- Quantify concrete corrosion loss of mass over time
- Measure compressibility before and after exposure
- Compare samples at two similar locations in the wastewater collection system
 - Allow H₂S exposure in one sample Untreated
 - Remove H₂S in second sample Treated
- Try Destructive Test with Multiple Concrete Test Specimens
- Expose samples in an operating collection system for 2 years
- Measure exposure conditions in both samples
 - Long Term Hydrogen Sulfide Monitoring
- Test the Test....

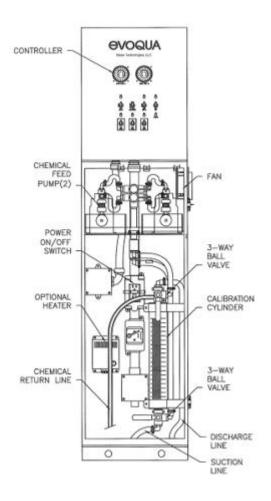
Summary of Test Sites

Two Sites Selected –


• Exposure to High and Low H₂S Concs

Similar Force Mains:

- Same Collections Basin / Water Quality
- Similar Retention Time
- Similar Atmospheric Conditions (Rain, Temp, Humidity etc)


Parameter	Airport PS - Untreated	Centerplex PS - Treated
Average Daily Flow (MGD)	0.191	0.11
Forcemain Length (feet)	9,820	4,400
Forcemain Diameter (inches)	6	8
Average Retention Time (hr)	1.8	2.5

Study Area

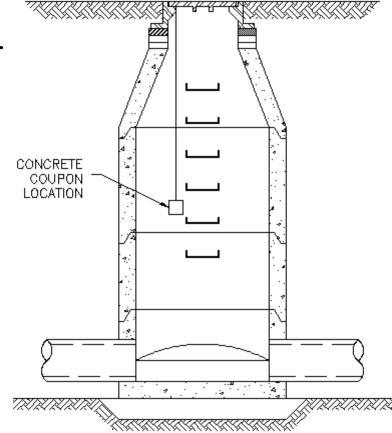
Methods – "Treated"

- Centerplex Station "Treated"
- Hydrogen Sulfide Eliminated with the use of a Nitrate Salt
- Nitrate Salt is 60% active solution of a combination of calcium nitrate salts
- Nitrate harmlessly converted to Nitrogen
- Prevents sulfide formation
- Used for Odor Control

Methods – Test Specimens

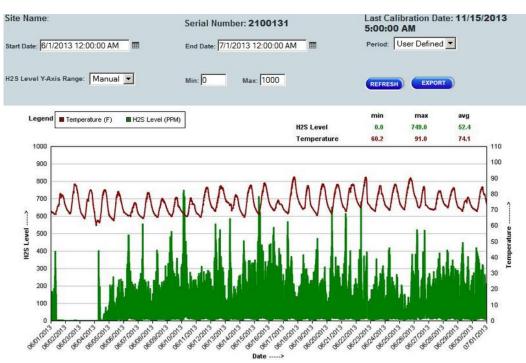
Concrete test specimens

- Fabricated by third party contractor.
- Type II Portland cement
 - Performed in accordance with ASTM C150
- Testing and curing
 - Performed in accordance with ASTM C192



Concrete Coupons Curing

Methods – Concrete Test Specimens


Concrete coupons

- 8 coupons exposed per site
- Treated
- Untreated

Methods – Sulfide Monitoring

- Hydrogen Sulfide Vapor Concentration
 - (5 min intervals)
- Dissolved Sulfide
 - (monthly)

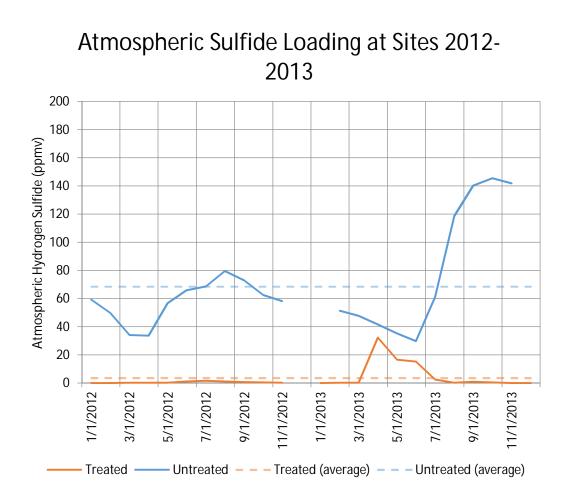
Methods – Sample Weighing

Prior to each weight measurement:

- Samples were washed to remove attached growth
- The scale was calibrated with a 1.000KG standard

Sample weighing was performed on samples at 6 month intervals

Methods – Compression Testing


Compression Testing

- performed by a certified 3rd party contractor
- performed as outlined in ASTM C39
- Forney FHS Series Premium Compression Tester

Data – Atmospheric Sulfide

- Airport PS Untreated
 - 69 ppmv average H₂S
 - 146 ppmv peak
- Centerplex PS Treated
 - 4 ppmv average
 - 32 ppmv peak

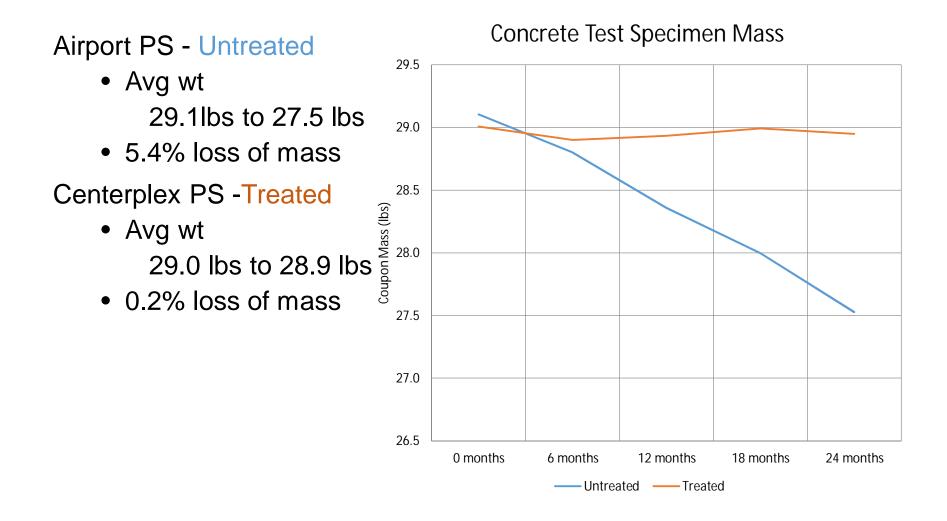
Data – Dissolved Sulfide

Airport PS - Untreated

- 7.2 mg/l avg DS
- 8.9 mg/l peak DS

Centerplex PS – Treated

- 0.08 mg/l avg DS
- 0.6 mg/l peak DS


Dissolved Sulfide Loading at Sites 2012-2013 20.0 Atmospheric Hydrogen Sulfide (ppmv) 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 1/1/2012 3/1/2012 5/1/2012 7/1/2012 9/1/2012 1/1/2012 1/1/2013 3/1/2013 5/1/2013 7/1/2013 9/1/2013 11/1/2013 Treated Untreatedl – – Treated (average) - - - Untreated (average)

Data – Calcium Nitrate Dosing

Calcium nitrate was dosed to obtain a slight residual at the control point

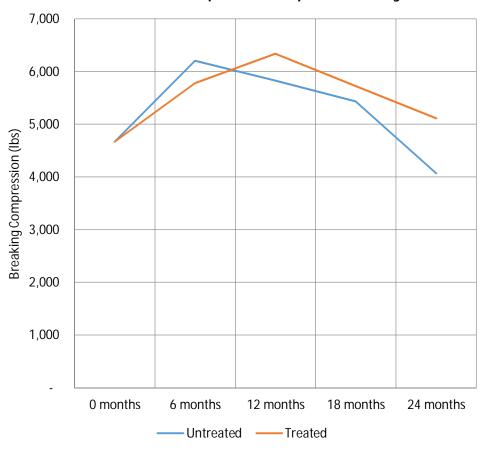
	Feed Rate (GPD)		Nitrate Residual (mg/l)			
	2012	2013	2012	2013		
January	34.1	32.4	2	4		
February	29.9	16.5	4	0		
March	28.5	16.9	4	0		
April	30	16.2*	4	0		
May	28.5	17.5*	3			
June	30.8	35.8	1	0		
July	41.7	36.2	2			
August	45.7	33.3	2	4		
September	36.2	32.7	3			
October	34.9	47	4			
November	34.7	47.1	2			
December	34.1	27.2	4	3		
AVERAGE	32	2.0	2.4			
Odors and Air Pollutants 201						

Data – Specimen Mass Summary

Data – Specimen Strength

Untreated for H_2S

Compressive strength reduced 13%


Treated for H_2S

• Compressive strength higher Initial breaks on samples 4,667 PSI

Continued hydration accounts for increase in compressive strength

- Strengthening peaked at 6 months for untreated coupons.
- Strengthening peaked at 12 months for control coupons

Concrete Coupon Compressibility

Results – Treated Samples

Exposure to an average of 3.5 ppmv (two year period)

• No loss in compressive strength During 2 year test duration

• 0.2% reduction in weight

Results - Untreated Samples

Exposure to an average of 69 ppmv (two year period)

- 13% loss of compressive strength
- 5.4% reduction in weight of samples

Conclusions

- 1. Presence of > 60 ppmv H_2S impacted specimens
- 2. Presence of H_2S resulted in mass loss of concrete (5% Less)
- 3. Presence of H_2S resulted in loss of compressive strength (13% lost)
- 4. Treatment to eliminate H_2S resulted in improved concrete condition

Further Study

- 1. Add to the data set study ongoing
- 2. Comparison of different H₂S exposure levels
- 3. Measure pH of Specimens
- 4. Better define H₂S neutralization cost benefits
- 5. Better define infrastructure life benefits
- 6. Better define the test.....Further Considerations
 - Shape of specimen
 - Cement composition
 - Timespan
 - Comparison with a new installation

Forward

Can we proact infrastructure failure.....

- 1. Infrastructure protection planning
 - Identify weak points....roadways
- 2. Monitor weak points
- 3. Look at cost benefits for protections
- 4. Implement Protections:
 - Operational Changes
 - Materials Linings
 - H₂S Capture or Neutralization

Questions?

